Innaxis at EASA-OPTICS conference. Cologne 12-14 April

Developing the future of a safe and growing aviation business, whilst also reassuring the travelling public that it is safe to fly, is a major vision for both EU and national aviation policies, however:

What role do policy makers play?

What are the recent, implemented safety measures?

Who is guiding the safety topics within aviation research?

EASA, the European Commission, the Advisory Council of Aviation Research & Innovation in Europe (ACARE), and the EU’s OPTICS Project organised a three day event in Cologne (12-14 April) in order to provide answers to these types of imperative questions, and furthermore define the way forward to ensure continued aviation safety in Europe. The event had a number of presentations and workshops within several aviation safety areas.

Two Innaxis’ team members David Perez (dp@innaxis.org) and Hector Ureta (hu@innaxis.org) attended the interesting event and took part in several of the workshops, explaining how can Data Science and BIG data can boost aviation safety. Hector  also presented some of the latest data science techniques and tools in safety research, based on SESAR-COMPASS project, during the third day of the event.

 

IMG_20160414_144630

Hector Ureta (Innaxis) presenting the Data Science research done in COMPASS (Cologne 14 April 2016)

 

The presentation, “Data science and data mining techniques to improve aviation safety: features, patterns and precursors”, is available online in this link.

If you’d like further information about data science in aviation, big data or aviation safety research completed by Innaxis, please feel free to contact Innaxis team (innovation@innaxis.org).

 

FullSizeRender

More details of the event available in EASA and OPTICS websites:

Guardar

Secure information sharing – secure multi-party computation in air traffic management

Easing confidentiality between business rivals through a clever use of mathematics

Secure Multi-party Computation is the preferred technique when multiple parties have to perform a computation, yet do not want to share private, confidential data. SecureDataCloud, the first research project about the application of SMC in air transport, has been recently completed by a team led by Dr. Zanin. The foundations of this technique are valuable for potential applications in the context of cyber-security, air transport and other domains.

The history of cryptography, i.e. the study of techniques for secure communication in the presence of adversaries, is fascinating and has been linked to social and cultural changes. Over two thousand years ago, the Caesar cypher was the state of the art. It involved an alphabet shift with a constant key, such that “abc” may be encrypted to “bcd”. This concept, while in actuality very simple to understand in present day, was a novel technique in the days of the Roman Empire.

Then, a substantial change in technology occurred in 1553, when the Vigenère cipher was invented by Giovan Battista Bellaso. This new cypher relied on a large key word, which controls the letter substitution depending on the letter used from the key word. If the key word is long enough, ideally, as long as the message itself, this schema is secure. The challenge of transmitting a long secret key was to use sentences from books that were owned by both the sender and the receiver, which in those days was less probable.

The most progress made in the cryptographic evolution has been achieved in the last decades, through the development of Secure Multi-party Computation (SMC) techniques. Previously, the scenario involved two parties trying to maintain privacy against an external adversary. However, in many modern applications, two or more parties need to maintain their privacy against each other, not just external adversaries. Yes, they still need to collaborate to exchange critical information, which is a significant change in the information security framework.

Secure computation was invented by Andrew Yao in 1982, and can be exemplified by the following problem, as originally proposed by Yao himself. Suppose two millionaires, Alice and Bob, are interested in knowing which is wealthier yet they do not want to reveal their actual wealth. To put in a different way, both parties (Alice and Bob) possess some information, respectively represented by A and B; the SMC problem is then an evaluation of a function C = f(A, B), such that at the end both Alice and Bob get to know C, but they don’t gain any additional information about A and B.

Many solutions have been proposed in the last 30 years enabling the evaluation of (almost any) functions. The mathematics involved in such computations could be complex and the computational cost associated with SMC protocols is high. Just to give an example, the secure two-party evaluation of an Advanced Encryption Standard (AES) encryption was achieved in 2007 (Lindell and Pinkas, 2007) but the computation takes around 20 minutes. Using SMC to access your bank account could be really secure but access to the information may take 20 minutes.

Innaxis started working on solving certain information-sharing paradigms in Air Traffic Management (ATM) using SMC in 2012. In these scenarios, different stakeholders must share information to reach a common goal, as mandated by the concept of Collaborative Decision-Making (CDM). Such information may be confidential and parties may not be comfortable sharing them due to high risk and confidentiality. For instance, considering the case of slot trading, airlines may be interested in trading slots, but revealing their target price is tantamount to giving away business information (i.e. the business value of that slot, the number of passengers they expect to allocate there, and so forth). Other applications of SMC could enable the exchange of safety information; exchanging the number of certain safety critical events might be beneficial to all airlines, but this kind of information is confidential and very sensitive and would better be shared through a SMC protocol.

Can these problems be solved by a trusted “neutral-party”, which is in charge of managing the information and ensure no ill-conceived analyses are executed? Possibly, but you have to find and trust the information maintains confidentiality within the neutral-party and ensure the security of the communication links in the transmission of the data. Additionally, having a single entity with access to every piece of data makes the system very vulnerable to cyber-attacks.

Starting from these considerations, we decided to start a research line concerning the use of SMC within air transport. The SESAR programme of the European Union recognised the value of this and financed the research project SecureDataCloud. We addressed two important problems: the trading of airport slots by airlines, and the calculation of delay statistics, both processed in a secure way.

The reader may refer to the several publications that resulted from this research work, with concrete implementation details that take address and solve the mathematical and computation challenges. Specifically, (Zanin et al., 2013) outlines the main ideas beyond the project and how SMC could be applied to ATM. (Zanin et al., 2014) and (Zanin et al., 2016) study a parallel problem, i.e. the creation of a secure CO2 allowance trading mechanism. Finally, (Zanin et al., 2015) deals with the problem of creating a secure trading mechanism for airport slot allocation.

Massimiliano Zanin will present SMC for air transport applications in the forthcoming Eurocontrol Cyber-security workshop, next March 23rd in Toulouse. If you need more details, about this talk or SMC in general, please feel free to contact Massimiliano, at mz@innaxis.org.

 

References:

Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party computation in the presence of malicious adversaries,”Eurocrypt 2007, vol. Springer LNCS 4515, pp. 52-78, 2007.

Zanin, Massimiliano, et al. “SecureDataCloud: Introducing Secure Computation in ATM.” SESAR Innovation Days,Stockholm (2013).

Zanin, Massimiliano, et al. “Enabling the Aviation CO2 Allowance Trading Through Secure Market Mechanisms.” SESAR Innovation Days, Madrid (2014).

Zanin, Massimiliano, et al. “Design and Implementation of a Secure Auction System for Air Transport Slots.” Services (SERVICES), 2015 IEEE World Congress on. IEEE, 2015.

Zanin, Massimiliano, et al. “Towards a Secure Trading of Aviation CO2 Allowance”. Journal of Air Transport Management, in press, 2016.

The Case for Mobility Modelling in Europe

INX_Mobility Modelling

There are many performance targets for the European aviation system. It is clear that performance-based frameworks are needed and utilised, especially when decision makers need to act on legislative packages or when operational managers need to make procedural changes or decisions regarding technology in aviation. This overarching model of operations proves that any costly decision must ultimately result in an increase in performance.

Different performance frameworks look into different aspects of the European aviation framework, with varying goals that are not necessarily compatible or align in the same direction. To illustrate, the FlightPath 2050 envisions an air transport system that improves safety levels but also guarantees a time-performance for the future passengers in Europe; up to four hours maximum door-to-door travel time for 90% of travellers. This number is not arbitrary, as it corresponds to the type of experience high level experts had envisioned for European passengers. However, punctuality and efficiency metrics are mostly flight centred. Passengers are rarely considered on time performance schemes and therefore very little is known about the actual door-to-door time performance from the passenger perspective. Decisions such as ‘when’ or ‘where’ to act in achieving this goal have proven to be more challenging than initially expected.

The European Commission Single European Sky Unit is working on the Reference Period 3, which delves deeper into the performance scheme for air navigation service and network functions. This performance framework is very detailed, but unfortunately does not yet include provisions for passenger time-performance. Due to the complexity of different, non-interchangeable metrics, the KPAs and goals of the different performance schemes do not necessarily match.

SESAR and CleanSky have detailed, technical performance goals. By looking into specific technology pieces or procedures, it is clear their technologies will surely improve the performance of many concrete operational elements (e.g. runway performance), however it is unclear how much those programmes will contribute to other performance frameworks. For instance, Europe may need additional funding to ensure better technology or have a different distribution of effort across the different technology research areas.

Mobility Modelling with Mercury
It is not realistic to believe a top-down Performance Framework can rule all initiatives. Each initiative has its complexities which justify executing independently, in occasions working with different groups of stakeholders or professionals. Nonetheless, a single vision for European mobility is needed.

Innaxis and the University of Westminster have been working for over 5 years on an integrated mobility model that provides a wide range of performance and mobility metrics, for use by a variety of airlines, network managers and policy makers. This integrated mobility model is called the Mercury Air Transport model (Mercury).

Mercury is capable of modelling passenger connectivities inside the European aviation system, along with a wide range of flight and passenger prioritisation scenarios. In order to cope with this monumental tasks, Mercury uses Soft Computing techniques and it runs in a cloud-based infrastructure. Mercury has been validated by airlines and captures airline decision-making and related costs by fusing a variety of data sources. Furthermore, Mercury works within the integration of different Performance Frameworks to produce the most accurate and useful metrics for each stakeholder.

Guardar

Guardar

Innaxis at SIDs 2015

Every year we are excited to participate in the SESAR Innovation Days (SIDs) 2015, organised by Eurocontrol and the SJU, which will take place this year in Bologna, Italy. In 2015, Innaxis has been particularly busy in long term aviation research and as in previous SIDs, we will be continue to be especially engaged during the event. We look forward to discussing many innovative research topics and provide an update on Innaxis’ efforts. These include:

 

  • The ComplexWorld network has greatly evolved within the last five years. On the first day of SIDs, the network coordinator, Paula Lopez, will present an overview of the ComplexWorld evolution since it was launched with special emphasis on the key 2015 outcomes and 2016 initiatives. Please feel free to reach out to Paula (plc@innaxis.org) if you are interested in obtaining more information on the network activities.
  • At Innaxis we have been working on new air transport metrics and indicators for the last few years. We have been crafting a tool to compute those metrics against real traffic data along with advanced visual tools to help understand these complex metrics. On the day before SIDs officially commences, Monday Nov. 30, we will be hosting a workshop on air transport resilience metrics: The 2015 Resilience2050 Workshop. Additional information along with free registration can be found here. Please contact Hector Ureta (hu@innaxis.org) for further information on the workshop and/or resilience research.
  • The EC four hour door-to-door challenge warrants more effort to bring everyone on the same page. Building new modelling tools, metrics and data analysis capabilities will help to understand how we may achieve this goal. Innaxis has strong expertise within Mobility, with coordination efforts in the Horizon 2020 Coordination and Support Action DataSET 2050, along with the most recent SESAR-CASSIOPEIA agent-based modelling framework. These research initiatives may be of interest to you if you are working with mobility. Please do not hesitate to contact our architect of mobility tools for ATM, Samuel Cristóbal (sc@innaxis.org) and Jorge Martin (jm@innaxis.org) who will be at the conference.
  • Exploring trade-offs between different stakeholders has always been one of the main research priorities within Innaxis. For this particular SIDs Innaxis has liaised with the University of Westminster and Belgocontrol to present the paper “Controller time and delay costs -a trade-off analysis”. The paper will be presented within the technical sessions of the SIDs.
  • Data Science has also been an area of major interest at Innaxis over the last few years. We are working on different elements of a big data / data science infrastructure to enable major data mining efforts within Air Transport, including: current delay propagation evaluations, airport and airline resilience against disturbances, and an evaluation on new paradigms for safety monitoring, all of which is contingent on powerful deep analytics. We have advanced very far in this area, for which we are very proud. Our colleague Massimiliano Zanin will be at the conference and can speak to these efforts. Feel free to contact him at mz@innaxis.org.
  • In addition, complex network theory has also been prioritised within Innaxis’s research efforts and has been increasingly used to study the air transport system by defining static or dynamic structures to characterise how airports are connected. Our ComplexWorld PhD student, Seddik Belkoura, will present a poster entitled “A young person’s guide to the reconstruction of air transport networks” depicting how the sampling processes intervening in the construction of such structures can affect the topological stability of the final system’s representation. Please, contact him if this is of your interest (sb@innaxis.org).
  • Information Management has also been an area of interest for us. In particular, we think Data Science paradigms can only be fully enabled if data is transparently shared across stakeholders, which can only be achieved with the right secure and encrypted mechanisms are put in place. Related to this, the Innaxis team will present a talk about the main results of the SecureDataCloud project. Again, please reach out to Massimiliano Zanin should this be your area of interest.
  • Last, but not least, we will also serve as SIDs rapporteurs and help Eurocontrol extract some conclusions as well as provide our own views on future research avenues. Carlos Alvarez will lead this during the closing session. Please, contact Carlos (calvarez@innaxis.org) if you’d like to continue the conversation!

 

We hope we have many opportunities to interact next week and hope you find our activities interesting and motivating for future initiatives.
See you soon in Bologna!

“Summerizing” the science

In the last few months, we have been busy at presenting the results of our research work at different conferences. For those of you that could not attend, here you have a short review!

First, several people from Innaxis attended the ECTL / FAA ATM Seminar 2015, in Lisbon, Portugal.

Seddik Belkoura presented a computational framework that compares flight trajectories (planned and executed) to detect all delay-generating events, and that can be used as a tool to identify the causes of non ATFM delay across any en-route system with the appropriate data. This algorithm extracts the probability distribution of the magnitude of a delay caused by one event per flight. From this, it has been possible to show the independence between the amplitude of en-route delay generated by a single event and the global delay of a flight. Additionally, a temporal and spatial assessment of the resilience of the en-route system to delay generation have been provided, which might lead to the identification of spatial zones that generates more delay, hence more fuel consumption, and to new tactical trajectory planification based on each ANS efficiency regarding en-delay recovery.

Additionally, Massimiliano Zanin gave a talk synthesising the results obtained in the POEM project, which we finished one year ago, and that was selected as one of the SESAR “Oustanding Projects” in 2014. We also had new results not presented until now. The focus of the talk was on the potential benefits of using a complex network approach to model the process of delay propagation. By using simple theoretical models, like a percolation process, it is possible to simulate different strategies for limiting delay propagation: all of this without extremely costly simulations, but just using known analytical results of network theory!

Both papers, Seddik’s and MZ’ ones, can be downloaded from the website of the conference.

The week after the ATM Seminar, MZ traveled to New York city, presenting the latest developments of the SecureDataCloud project at the IEEE SERVICES ’15. Impressive conference, with hundreds of attendees, and keynote talks from people of the level of Tsengdar J. Lee (NASA), Eric Brewer (Google) and Guruduth Banavar (IBM Research). In this case, the presentation had a much more applied flavour: describing the development of the software libraries for performing the secure computation, as required by the project and by the specifications suggested by the advising stakeholders. The development of the full system will be described in a paper, now under consideration, that we trust will be published shortly – so, stay tuned!

This is just a short abstract of the topics covered. So, if you need to know more, please contact the authors – mz@innaxis.org and sb@innaxis.org

Visual Communication Specialist position at Innaxis

Innaxis is seeking a Visual Communication Specialist to join its research and development team in a variety of projects. As a member of the team, you are joining a very interdisciplinary group of researchers, scientists, mathematicians and engineers that work for private companies and public institutions on solving the most challenging problems, ensuring their work is properly communicated through documents, digital media (including websites, video, presentations), events and potentially other communications means.

A mixture of creativity and technical skills are required to complement the skill set of a team that has worked in the last 5 years achieving landmarks in terms of network performance analyses across different areas. The ideal candidate has a passion for developing our brand image, through documents, conceptual graphics, video, presentations, web sites and data visualisation projects, perhaps beyond his/her areas of expertise, by coordinating with third party support as needed.

Requirements are as follows:

  • Degree or education on Fine Arts, Communication or a technical education degree with emphasis on aesthetics, like Architecture.
  • Solid design and conceptual representation skills.
  • Tastefulness and artful conception of data visualization and infographics.
  • An existing portfolio would be appreciated and positively evaluated.
  • Passion for data visualisation on top of current thinking and trends would be appreciated.
  • Fluency in English: it is the working language at Innaxis!

Technical skills that may be relevant in the evaluation:

  • Web publishing and web editing technologies: WordPress, HTML, CSS3.
  • Proficiency in documents editing and graphic tools.
  • Any visualisation technologies experience or interests are appreciated.
  • Video editing knowledge is a plus
  • Some extent of analytical thinking (e.g. programming skills, mathematical language, basic physics understanding) would also be a plus

Interested candidates should send their detailed CV and relevant information to innovation@innaxis.org

Data Scientist position at Innaxis

Innaxis is seeking a Data Scientist to join its research and development team in aviation projects. As a member of the team, you are joining a very interdisciplinary group of researchers, scientists, mathematicians and engineers that work for private companies and public institutions on solving the most challenging problems and get the most out of their data.

A mixture of creativity and technical skills are required to complement the skill set of a team that has worked in the last 5 years achieving landmarks in terms of network performance analyses across different areas within the aviation sector.

We are looking for a talented individual to help the team to complement the existing research threads on machine learning and data mining, to provide new insights on the performance of complex systems and enable the real time analysis of complex phenomena. Being part of our team will mean to cooperate with other skilled researchers currently focused on knowledge discovery, data engineers and visualisation experts.
Requirements are as follows:

  • Degree on Computer Science or similar (mathematics, physics) with outstanding background and experience in programming.
  • Experience on collection and preparation of datasets for machine learning exercises.
  • Understanding of general architectures and tools for machine learning, from validation to (automatic) feature selection.
  • Fluency in English: it is the working language at Innaxis!

Technical skills that may be relevant in the evaluation:

  • Understanding of the theoretical and implementation approaches for standard data mining models and algorithms, from SVMs to deep learning techniques based on Deep Neural Networks, as well as their combination.
  • Basic knowledge of database technologies and use: MySQL, MongoDB, JQuery.
  • Any programming language is a plus: both general (Python, C, Matlab) and data analysis oriented (Weka, R) …

We offer:

  • Immediate start within a highly qualified and collaborative international team with innovative thinking and working methodology focused on the development of large scale research and innovation projects.
  • Interesting salary as a function of skills, experience and education.
  • Flexibility and good working conditions

Interested candidates should send their detailed CV and relevant information to innovation@innaxis.org

Big Data Engineer position at Innaxis

Innaxis is seeking a Big Data Engineer to join its research and development team. As a member of the team, you are joining a very interdisciplinary group of researchers, scientists and engineers that work for private companies and public institutions on solving the most challenging problems and get the most out of their data. A mixture of creativity and technical skills are required to complement the skill set of a team that has worked in the last 5 years achieving landmarks in terms of network performance across different areas within the aviation sector.

We are looking for a talented individual to help the team to complement the existing research threads on engineering infrastructures to support data mining against large datasets. Your role within the team will be to design, test and implement state-of-the-art information acquisition systems of existing data sources within the aviation sector. This data will be further analysed in search for insightful patterns and ultimately knowledge discovery. The acquisition systems developed should also be cost-efficient, reliable and in compliance with our data providers privacy directives.

Requirements are as follows:

  • Degree or MSc on Computer Science with outstanding background and experience in programming and systems management.
  • Strong interest for Amazon cloud-based solutions, specifically EC2, EBS, RDS and IAM.
  • Strong interest for databases design and management, including SQL and NoSQL solutions and ecosystems.
  • Enthusiasm for software design and testing methodologies
  •  Fluency in English: it is the working language at Innaxis!

Technical skills that may be relevant in the evaluation:

  • Knowledge of database technologies and use: MySQL, MongoDB, JQuery
  • Proficiency in at least one programming language: Python, Perl, R, C++
  • Understanding of data mining algorithms: KDD, support vector machines, etc.

We offer:

  • Immediate start within a highly qualified and collaborative international team with innovative thinking and working methodology focused on the development of large scale research and innovation projects.
  • Interesting salary as a function of skills, experience and education.
  • Flexibility and excellent working conditions.

Interested candidates should send their detailed CV, a research interest letter and any relevant information to innovation@innaxis.org

Innaxis at Data Science Spain

The first anniversary of Data Science Spain group, took place last 4th February 2015, at MediaLab Prado (Madrid). In this event, Innaxis’ director David Perez presented “Data Science in Aviation: challenges and opportunities”, accepting the kind invitation of Synergic Partners, which organized and sponsored the event. The other interesting presentations were given by:

Carme Artigas – Synergic Partners
José M. Camacho – Analyst Programmer, Intelygenz
Juantomás Garcia – CDO AspGems
Felipe Ortega – Data Scientist & Researcher URJC University.

The Big Data & Data Science groups and initiatives in Spain are increasing non-stop. A tangible metric is that -in Europe- this group has become the third largest one in Meetup, only after London and Zurich, with close to 600 members. Data Science Spain is comprised mostly of Data Scientist, with a wide range of backgrounds and coming from several fields: energy, transport, telco, finance, social, among others.

It was definitely an interesting opportunity to do networking and learning new things!

Connect with us!