Welcome to Innaxis News

The Innaxis Post

Read our Blog

European door-to-door mobility workshop! 20th Sept, Madrid

Save the date: European door-to-door mobility workshop, next 20th September 2017, 10:00-16:00

Are you interested and/or doing research in the field of passenger transportation and European mobility? Are you interested and willing to improve current door-to-door passenger experience and metrics? Are we close to the 4 hour door-to-door European objective?  Come and join the free second www.DATASET2050.com workshop!

The event, hosted at Google Madrid Campus will mix active debate and participation from all the workshop attendees with presentations from top entities in the field: Innaxis, University of Westminster, Bauhaus-Luftfahrt, Eurocontrol, ACARE WG1, invited speakers, other mobility projects. Topics like passenger profiling, door-to-door models and metrics, transport demand and novel transport concepts will be tackled!

Event registration is free but with limited places available: do it here https://goo.gl/forms/3t6yoKlpwvzfXf6u1

Final agenda and logistic information to be attached to this page in the following days

see you next 20th Sept in Madrid!

 

Are regulatory and business changes aligned with key ATM objectives? (Introducing the Vista project).

How will different regulatory and business changes affect the KPIs of ATM stakeholders in the 2035 and 2050 horizon? Are the various foreseen changes aligned to obtain improvements in key indicators? Will trade-offs emerge from different policies to be implemented? What is the impact of technology changes on different economic developments?

Vista considers these questions and examines the effects of conflicting market forces on European performance in ATM, through the evaluation of impact metrics on four key stakeholders (airlines, passenger, airports and ANSPs), and the environment. The project comprises a systematic, impact trade-off analysis using classical and complexity metrics, encompassing both fully monetised and quasi-cost impact measures. Vista will model the current, 2035 and 2050 timeframes based on various factors and their potential evolution.

The factors modelled in Vista influence the stakeholders’ choices: prices of commodities and services, regulations from national and supranational entities, and new technologies are all part of a complex socio-economic system that results in evolving business models, passenger choices, etc. These factors are divided between regulatory and business factors. Business factors may affect technology uptake and economic changes. Regulations, on their turn, may act as enablers of the technological and operational changes, e.g., the Single European Sky regulatory framework, or may directly affect the performance of some stakeholders, such as air passenger rights.

The different factors considered have been obtained from a literature review of regulations, projects, technological and operational changes. Concerning the regulations, the different areas of the ATM network and regulations applying to them have been reviewed. Communications and strategies laid down by, or foreseen by, regulatory trends have been used to identify the possible evolution of these regulations. The main source for the business factors are the SESAR projects, in particular, the high-level goals of SESAR described in its Master Plan (Ed. 2015), as well as more precise information related to the SESAR workpackages. The expected impacts of operational sub-packages in SESAR will be used to identify the impact of these on the evolution of KPIs. Some more long-term R&D research activities are also considered, in particular to be used in the 2050 scenarios of Vista. Other business factors include the price of fuel, the business models of the airlines, and changes in demand linked to the socio-economic development of Europe. Regarding the latter, many factors will be considered as closely linked and the diverse possibilities of development will be significantly influenced by outputs such as the STATFOR forecasts.

From_forces_to_scenarios_v2

In the Vista model, regulatory and business factors are classified between foreground and background factors. Background factors are grouped to generate background scenarios onto which the foreground factors will be tested. These background scenarios, identified below, define different possible evolutions for the 2035 and 2050 horizons and have been defined to identify the impact of the technology on different economic development scenarios.

Period Name Technology development Economic development
Current Current Current Current
2035 L35: Low economic, Low Techno Trajectory-based performance as defined in SESAR Low economic development
M35: High economic, Low Techno Medium economic development
H35: High economic, High Techno Performance-based performance as defined in SESAR
2050 L50: Low economic, Low Techno
M50: High economic, Low Techno High economic development with an increment on environmental-friendly passengers
H50: High economic, High Techno Enhanced performance-based performances as defined in SESAR

Examples of foreground factors, the impact of which will be individually assessed, include: regulatory changes on passenger provision schemes, fuel charges, or the introduction of smart ticketing. Foreground factors can also be grouped in higher-level categories to identify the impact of different policies on the scenarios: environmental mitigation policies (e.g., emission scheme and noise pollution regulation), regional infrastructure usage (e.g., airport access, regional infrastructure development), passenger focus modifications (e.g., passenger provision schemes and reacommodation tools) and Single European Sky (e.g., 4D trajectory management, traffic synchronisation, airspace charges). The qualitative impact of the factors, both foreground and background, on each part of the model has been identified.

VISTA_architecture_pre

Vista will necessarily model all ATM phases: strategic, pre-tactical and tactical. Factors will have different impacts on these time scales. The Vista model has been created following these temporal layers. A scenario, defined as an instantiation of foreground and background factors, will be executed by the model. The strategic layer, will use an economic model to balance the strategic demand and capacity of the different elements in the ATM network and schedules will be provided to the pre-tactical layer. The pre-tactical layer will generate flight plans, passenger itineraries and ATFM regulations. These flights and passenger itineraries will be executed tactically using the Mercury model <link to Mercury page>. Mercury model has been developed on previous projects (POEM <link to POEM page>, ComplexityCosts <link to CC page>) and allow the simulation of flights and passengers itineraries obtaining not only traditional flight-centric metric but also passengers focus ones. See our next blog <link to blog 3> for more information regarding Vista tactical layer. Being a stochastic model the output of the different layers will be consolidated to analyse the results and understand the horizontal and vertical trade-offs identified. Finally, a learning loop will be used to give feedback to the strategic layer on the metrics obtained and, based on the initial expectations of the model, to adjust strategic behaviour. This will ensure that, after several iterations, a stable and realistic realisation of the scenario is obtained.

In order to capture the impact of the different factors on the model and the evolution of the system, dedicated site visits and consultation with experts have been performed (see next blog entry for more details). The Vista approach and methodology was been presented at the 2017 World ATM Congress (7-9 March 2017, Madrid) and at the 2017 ART Workshop (26 April 2017, London).

Towards user-centric transport in Europe – Challenges, solutions and collaborations

The EU projects Mobility4EU (http://www.mobility4eu.eu/) and MIND-SETS (http://www.mind-sets.eu/) jointly organized the event “Towards user-centric transport in Europe – Challenges, solutions and collaborations” in Brussels in May. The aim was to bring together stakeholders from different areas to discuss innovations in transport and mobility addressing future challenges for the European transport system (http://www.mobility4eu.eu/midtermevent/). One part of this event were several interactive sessions in which the participants discussed various issues relating to the improvement of current transport practices. The partners of DATASET2050 acted as facilitator of the session “Enhancing multi-modal collaboration between service providers”, in close collaboration with the EU project PASSME.

Applying the “World Café” approach, this session focused on the better integration of different service providers in order to facilitate a seamless journey for the passenger (see the figure below for examples of existing and future intermodal concepts, these will be addressed in more detail in upcoming deliverables of DATASET2050). Within different groups, simulating a round table in a relaxed atmosphere, participants of the workshop discussed a variety of approaches that reduce friction along the journey. One aspect which had been discussed extensively is the establishment of a legal framework accompanying the closer collaboration of service providers. Legal issues concern the liabilities in terms of delays, lost luggage or reimbursements. Furthermore, data sharing both between providers as well as between providers and passengers had been highlighted as being a main contributor to a seamless journey. Passengers receiving real-time information as well as alternative travel options along the journey have to be enabled by a shared data pool all providers have access to. This, however, requires a clearly defined set of rules and responsibilities regarding data handling and passenger privacy issues in order for all parties to participate. In terms of passengers’ data privacy concerns, studies have shown that passengers agree to share their personal data with service providers if both data security can be guaranteed and their journey and travel experience is improved.

In terms of collaboration, the “last mile”, which covers the distance between the final destination and the last stop of e.g. public transport, often constitutes a bottleneck within the seamless journey. Therefore, ideas within the workshop circled around passengers pooling their demand and sharing a taxi in order to get to the airport or the train station. Or autonomous cars providing an option to cover the last segment of the passenger journey by efficiently assigning resources to the time and location they are needed. Overall, participants argued that there is no single solution which fits all passenger needs but that customization and differentiation across distinct groups have to take place.

 

inter-modal conecepts

References

9292 / https://9292.nl/
Airbus / http://www.airbus.com/de/
Airportbus Munich / https://www.airportbus-muenchen.de/
Air-Rail / http://www.air-rail.org/index.php?lang=EN
Air-Train / https://www.globalairrail.com/awards/24-awards/awards-2016/216-airtrain-city-marketing
Ally / https://www.ally.com/
Allygator / https://www.allygatorshuttle.com/
Amtrak / https://www.amtrak.com/home
Bike Train Bike / http://www.bitibi.eu/
Blacklane / https://www.blacklane.com/de
Boring Company / https://www.boringcompany.com/
Bus and Fly / http://busandfly.com/de/page.php
Cabify / https://cabify.com/
Cambio / https://www.cambio-carsharing.de/
Car2Go / https://www.car2go.com/DE/de/
Chu Kong Shipping Enterprises / http://www.hulutrip.com/product/41617.html
Citybike / https://www.citybikewien.at/de/
Citymapper / https://citymapper.com/rhineruhr
Clipper / http://clippercard.com
Cotai Waterjet / http://www.cotaiwaterjet.com/airport-ferry-services.html
Deutsche Bahn / https://www.bahn.de/p/view/service/fahrrad/call_a_bike.shtml
DriveNow / https://www.drive-now.com/de
Drivy / https://www.drivy.de/
Ehang / http://www.ehang.com/
Emmy / https://emmy-sharing.de/
Ferrara Bus & Fly / http://www.ferrarabusandfly.it/
Flinkster / https://www.flinkster.de/
Flightcar / http://farewell.flightcar.com/
Fraport / http://www.fraport.de/de.html
Free2Move / https://de.free2move.com/about
Gett / https://gett.com/
GoEuro / https://www.goeuro.com/trains/
Hannovermobil / https://www.uestra.de/mobilitaetsshop/hannovermobil/
Hyperloop One / https://hyperloop-one.com/
Iberia / http://www.iberia.com/de
Kobe – Kansai Bay Shuttle / https://www.kobe-access.jp/eng/
Lyft / https://www.lyft.com/
Memobility / http://www.memobility.de/
MobilityMixx / https://mobilitymixx.nl/home.html
Moovel / https://www.moovel.com/de/de
Mozio / https://www.mozio.com/de-de/
Mycicero / http://www.mycicero.it/
Mydriver / https://www.mydriver.com/de/
Network Rail / https://www.networkrail.co.uk/
Octopuscard / http://www.octopus.com.hk/home/en/index.html
ÖBB / https://www.oebb.at/de/
Oystercard / https://oyster.tfl.gov.uk/oyster/entry.do
Rallybus / http://rallybus.net/
Rome2Rio / https://www.rome2rio.com/de
SBB / https://www.sbb.ch/de/home.html
Stadtmobil / https://www.stadtmobil.de/
Swiss Helicopter / http://www.swisshelicopter.ch/DE/
Tamyca / https://www.tamyca.de/
Taiwan High Speed Rail / https://www.thsrc.com.tw/index_en.html
Thalys / https://www.thalys.com/de/de/
Touch & Travel / http://www.7mobile.de/handy-news/touch-travel-bahnticketkauf-mit-dem-smartphone-moeglich.htm
Turo / https://turo.com/
Tuup / http://tuup.fi/
Uber / https://www.uber.com/
Union Station Denver / http://unionstationindenver.com/
Urbanpulse / http://www.urbanpulse.fr/
Velib / http://www.velib.paris/
Voom / https://www.voom.flights/
VW (Sedric) / http://www.discover-sedric.com/de/
Wideroe / http://www.wideroe.no/en
Wmata / https://www.wmata.com/
Yugo / https://getyugo.com/barcelona
Zee Aero / http://www.zee.aero/

Augmented reality and data visualization (in aviation)

Present-day technology is so powerful that the perception of reality can be easily and realistically modified with IT tools, providing users withan experience beyond “simple” reality. This is achievable by mixing real-world environment elements supplemented and/or augmented by computer-generated inputs. The current post unpacks this topic, focusing specifically on the data visualization aspects. In brief, augmented reality can take two approaches:

  • First, inventing totally new scenarios, in which the user becomes part of a “parallel universe”. Supplementing the real-world environment with an unreal one; either a virtual place (video game) or a different location (i.e. another real location). This is the case of futuristic 90’s and early 2000’s alike head-mounted displays with users’ eyes looking at full screens recreating other places. The ergonomics aspects are usually modest for most of the applications due to the head-mounted displays weight and size.

5dt.jpeg

  • The second, and closer to “data visualization” area is the so called “mediated reality”. The real-world environment enhanced by virtual elements displayed in glasses, windscreens etc. In them, additional information/data is provided. The real challenges is to decide what, how and when to display the information, without requiring users to look away from their usual viewpoints, while providing extra value. The integration and user experience is much more natural and enjoyable than the fully immersive systems.
Research project Augmented Reality - contact-analogue Head-Up Display (10/2011)

Research project Augmented Reality – contact-analogue Head-Up Display (10/2011)

In this context, one of the very early examples of head-up displays can be found precisely in aviation, almost 80 years ago. In 1937, the German ReviC12/A fighter aircraft included a basic reflector sight indicating some basic aircraft magnitudes such as speed and turn rate, to reduce the (visual) workload of pilots in case of extreme maneuvering
659px-Revi_C12-A
Nowadays virtually all modern fighters (F18, F16, Eurofighter) use head-up displays. The most modern versions (F35) do not have head-up displays, and instead include helmet mounted displays, ensuring the proper orientation of the user’s head, for all circumstances.
Hud_on_the_cat
One of the trending topics of augmented reality within aviation is its usage in air traffic control (ATC), particularly in Tower environments. Below are two common approaches:

  • Visual information is enhanced to ease identification and tracking of aircraft. This includes tools similar to head-up displays and/or helmets-displays that enhance the information (providing for instance, aircraft ID, scheduled times, etc). This approach could be extremely useful in low visibility conditions by facilitating the tower ATCOs tasks. It also avoids dividing attention between the primary visual field (the window) and the auxiliary tools (surface radar, strips etc).

Screen Shot 2017-02-23 at 15.05.29maxresdefault

  • The extreme version is a complete virtual control tower, the so called “remote tower”. ATC would have remote control rooms with video-sensors on-site, including augmented reality enhancements. The synthetic augmentation of vision increases the situational awareness at the airport, especially during poor visibility conditions, or blocked line-of-sight areas due to airport geometry. It additionally provides benefits in terms of cost saving (no need to build and maintain control tower facilities) and a more efficient use of human resources (potentially serving multiple airports with low traffic events from a centralised location). Research in this field started in FP6 project “ART” and is now being progressed by SESAR WP6. In fact, Örnsköldsvik/Gideå airport is the first on the world deployment of remote tower, in late 2015, by the Swedish LFV. In US, Fort Collins-Loveland Municipal Airport was the first approved and tested airport with a remote tower in 2016.

Screen Shot 2017-02-23 at 15.08.47
For the air passenger and mobility context, augmented reality and the wide range of solutions providing additional real-time information to passengers is taking off as well. (No pun intended.)
These technological innovations include indoor location tracking, real-time information on boarding gates, real-time updates on flight delays, and information on airport facilities and shops. This is also being expanded to knowing the number and location of available parking spaces to facilitate the passenger experience in the (sometimes not so easy) airport processes. For example, Copenhagen airport, in collaboration with SITA, created the very first augmented reality indoor app in 2012. Now there is an endless list of both airlines and airports with similar apps.
40154332-1-610-sita-augmented-reality-starbucks40154332-5-610-sita-augmented-reality-gate-info
Do you think augmented reality together with innovative data visualization can have a significant impact in future aviation?
What are its challenges and potential benefits?
We’re interested in hearing your thoughts and ideas.

On maps

How are “mobility” and trips visualized and represented? Well, the most direct, intuitive way of doing so, is using maps. Representations, converting the 3-dimensional earth (*sphere*) to a flat  2-dimensional surface. This post is about maps, map properties, map distortion and curious maps. We hope you enjoy it!

Mapping the earth, or parts of it, is a classic, well-studied problem. For hundreds / thousands of years, cartographers and mathematicians have come up with different methods to map the curved surface of the earth to a flat plane. The main problem is that you cannot do this perfectly, (Theorema Egregium). The shape, area, distances and directions of the surface cannot be represented properly at the same time on a map.

1

Shape: If a map preserves shape, then feature outlines (like country boundaries or the coast lines) look the same on the map as they do on the earth. A map that preserves shape is conformal. The amount of distortion, however, is regular along some lines in the map. For example, features lying on the 20th parallel are equally distorted, features on the 40th parallel are equally distorted (but differently from those on the 20th parallel), and so on. The Mercator projection is one of the most famous and well-used shape-preserving maps:

2

Area: If a map preserves area, then the size of a feature on a map is the same relative to its size on the earth. For example, on an equal-area world map, Spain takes up the same percentage of map space that the actual Spain takes up on the earth. In an equal-area map, the shapes of most features are distorted. No map can preserve both shape and area for the whole world, although some come close over sizeable regions. Sinusoidal projection is an area-preserving projection:

3

Distance: If a line from a to b on a map is the same distance (accounting for scale) that it is on the earth, then the map line has true scale. No map has true scale everywhere, but most maps have at least one or two lines of true scale. For instance, in the Casini projection, the distances perpendicular to central meridian are preserved:

4

Direction: Direction, or azimuth, is measured in degrees of angle from north. On the earth, this means that the direction from a to b is the angle between the meridian on which a lies and the great circle arc connecting a to b. If the azimuth value from a to b is the same on a map as on the earth, then the map preserves direction from a to b. No map has true direction everywhere.

Finding the compromise: Most of the maps used are compromise solutions, partially preserving some of the above mentioned properties. The most used one (by far) is the one you can find in Google Maps, OpenStreetMaps etc. called Web Mercator, Google Web Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator. It is a variation of the Mercator projection, ignoring the ellipticity of Earth for faster computation:

5

The Winkel tripel projection. “Triple” stands for trying to minimize errors in three properties at the same time: area, direction, and distance. The Winkel tripel is the arithmetic mean of different projections (equi-rectangular, area and shape preserving)

6

There is even a whole family called Myriahedral projections. These consider the earth *sphere* to be a polyhedron with a very large number of faces, a “myriahedron”. This myriahedron is cut open into small pieces and unfolded. The resulting maps have a large number of subareas that are (almost) conformal and that (almost) conserve areas. The location of the map interruptions can be “selected” (oftenly using sea areas etc)

7 8

 

 

 

 

 

 

 

 

Some ingenious representations mix the approach from Myriahedral projections and other property-preserving projections. e.g. the Goode Homolosineprojection:

9

All the previous projections provoke distorsion. There is no perfect projection. In the nineteenth century, Nicolas Auguste Tissot developed a simple method for analysing map-projection distortion. An infinitely small circle on the earth’s surface will be projected as an infinitely small ellipse on any given map projection. The resulting ellipse of distortion, or “indicatrix”, shows the amount and type of distortion at the location of the ellipse. Some examples for the most-used projections are given below.

10

If all the previous was not enough, it just leaves the door open to other projections that represent additional variables in maps, such as socio-demographic or technical indicators.

A map with country size proportional to population:

11

Proportional to number of immigrants:

12

Proportional to the number of tourists (Spain the biggest country in the world!):

13

Or even proportional to the total number of flights (this is one of my favourites!):

14

Some references and further reading on the topic:

How do you catch a plane?

How do you catch a plane? More interestingly: what are the stages of your door-to-door journey when an airline flight is involved? They’re most likely not all the same as anyone else’s.

There are a myriad ways of getting from your starting point (home, office, hotel) to the airport – from “door” to “kerb”. It could be by private car – whether “kiss-and-fly” (driven by family or friend), a ride-share with another passenger/co-worker, a taxi/minicab or their modern app-based equivalents, or we can just drive ourselves and park in the long-term or short-term car park (or maybe an off-site car park which then took you to your terminal by shuttle bus). It could be by bicycle or motorbike. It could be by bus, coach, tram, train, metro, or a combination of these – but how did you get to the stop/station for first one; walking, taxi, driving, “kiss-and-ride”, cycling – and where did the last one drop you off: the terminal, the airport transport hub? You may have driven, and then had to return, a hire car (if this is a return leg or your trip) and then took the hire company’s shuttle. If you left from an airport hotel, you most probably took their shuttle.

2-1

Getting through the airport (from “kerb” to “gate”) also involves many options. Did you check in online or do you have to do it at the terminal? Do you have bags to check in? Do you have to go through passport control? How long is the queue at the security check? How much buffer time did you leave, that you can now spend browsing around the shops? How many miles do you have to walk to get to your gate? Is your flight delayed?

Your answers to these questions (and their equivalents for the “gate” to “kerb” and “kerb” to “door” legs once your flight has landed), as well as the process for the actual flight(s) from gate-to-gate (including any transfers), have a bearing on how long your total journey will take. To be able to determine where there is room for reduction in this journey-time, and where research must be directed to initiate this reduction, in order to meet the ACARE goal of 4 hours door-to-door for intra-EU journeys, the DATASET 2050 team have analysed the component times of the current air journey in detail. This work is presented in the project’s deliverable 4.1 – Current Supply Profile.

Data for such analysis is hard to come by. Much of it is proprietary and, if it’s available at all, is sold at a high price – too high for this project. That which is available generally concerns all passengers, rather than just those on intra-EU travel; are people really likely to ride on one of the scheduled overnight coaches from Edinburgh to Heathrow to take a short-haul flight?

Making use of tools such as those provided by Google Maps, DATASET2050 researchers have been able to see the time taken to access airports by car, bicycle and public transport for a selection of airports.

2-2 2-3 2-4
 Berlin Tegel access-egress times by (L-R) bicycle, public transport, and car

(NB: scales are different, see them full size below)

These results and the many others included in D4.1 will help colleagues working on the next steps in the DATASET2050 project determine which parts of the different segments of your door-to-door journey can be speeded up, and where research and development is needed to further reduce our journey times.

 

 

2-2

2-3

2-4

Airport Economic Value study published!

The Modelling Airport Economic Value Study recently published (link here) has been made by the University of Westminster (Andrew Cook, Gerald Gurtner, Graham Tanner and Anne Graham) and Innaxis Research Institute (Samuel Cristobal), supporting EUROCONTROL (Denis Huet and Bruno Desart) within SESAR Project 06.03.01. The study provides a better understanding of the interdependencies of various key performance indicators (KPIs) and assesses the existence and behaviour of an airport economic optimum, in a similar way to the early 2000s, when estimating the economic en-route capacity optimum.

post1

By gathering for the first time real operational, financial and passenger-satisfaction-related data over 32 European airports, it was possible to develop and calibrate a model which produces reliable and realistic results. The fully calibrated results show the presence of a trade-off between the cost of extra capacity and the increase in the number of flights operated. As a consequence, all 32 airports exhibit a maximum in net income as a function of capacity, when the marginal cost of operating extra capacity is sufficiently low. This threshold in the marginal cost is, however, rather different across airports, and only a few airports can sustain a high cost of capacity: these are the largest and most congested airports, which clearly need extra capacity. This threshold is roughly consistent with the airports’ current operational cost of capacity, which means that they should be able to manage this growth, subject to the availability of investment.

The team has also developed a tool that provides access to all the features of the mathematical model with out having to dig into the equations. The underlying mathematical module is written in Python, while the interface is written in Matlab. The communication between the modules is transparent to the user and the software is capable of auto-calibrate the airport model using the existing or new data. The tool is flexible to explore the parameter space and different views of the output variables can be selected for a better understanding of the model outcomes. Results can be saved then in common format for further use (txt, csv, png, fig, etc.)

Screen Shot 2017-02-01 at 13.59.56 sample2122 blog_post32143

 

We warmly invite you to read the full report here!

Congrats to Samuel/UoW colleagues for such a superb study 😉

 

A new generation of business traveller

The DATASET2050 project does not only examine current European passenger profiles but also looks at possible passenger types in 2035 and 2050. To develop future demand profiles, current ones are either adjusted (see Current European PAX profiles), or new profiles are developed. As there is still a lot of uncertainty regarding how we are going to live and travel in the future, and since the project follows a data-driven approach, only passenger characteristics that can be supported by data are taken into consideration. Examples for developments supported by data are the ageing population in Europe, the increase in single households and the tendency to have fewer children per household.

For 2035, six future passenger profiles for the EU28 and EFTA countries are developed. Among these, the Digital Native Business Traveller was identified as one of the main passenger types in Europe. This group takes a journey mainly for occupational reasons and it can be seen as the new generation of business traveller. However, due to the high usage of technological devices one can assume that this passenger type is constantly connected and always online in continuous digital exchange with the private life, friends and family. He or she will be in the typically age of the working population of around 24 to 64 years, which today represents the digital savvy Generation Y and Generation Z. The income level and amount for transport expenditure will be medium to high. 0.5 to 1.5 trips per capita per year are taken, either alone or accompanied by another person. A large share of this passenger type will be female as the increase in female tertiary education enrolments might lead to an increase in working women within higher professions and hence an increase in women travelling for business purposes. Finally, he or she does not mind checking in luggage but takes only hand luggage when going on short trips. Public transport, taxi or car sharing are the preferred airport access mode choices.

3-1

Figure: The new generation of business traveller is digital savvy and constantly connected, enabled by emerging technology and new innovations to come.

This is one example of how a typical passenger group in 2035 could possibly look like. The outcome of all passenger demand profiles will be put in contrast with coming work packages (i.e. future supply profile), enabling this way a complete assessment on the European door-to-door mobility in the future. More information about the remaining passenger types, the methodology and databases can be found in the report on future passenger profiles.

INXmas greetings, 2017

We have had lots of fun innovating in 2016, so we are eager for a 2017 full of harder technical and scientific challenges, new research threads and complex innovation.

All the Innaxis team wish you a Merry Xmas break -including some fun and rest-  and a superb 2017!

ho ho ho!!!

img_7887

SafeClouds at EASA 2016 annual event and European Commission newsletter

SafeClouds.eu, the most advanced project to improve aviation safety through data analysis, was presented at the EASA 2016 Annual Safety Conference, held in Bratislava last November.
Carlos Alvarez, President of Innaxis, participated in the panel “Sharing and processing safety data: a vital step forward for safety?”. Carlos laid out the main goals of the project as well as our priorities for the next month, strengthening the importance of an integrated data pipeline, from low level raw data management to embedded analytics, driven by user operational questions. The integrated approach will be capable of developing data science solutions to provide all-new capabilities for safety improvements to aviation stakeholders.
You can watch the video of the session:
 shutterstock_245210677_plane_sunset_web_0
In parallel, SafeClouds.eu was also selected for the INEA/European Commission newsletter. This newsletter highlighted just 6 out of the hundreds projects recently awarded within the EU H2020 programme. As it is pointed in the newsletter “The (SafeClouds) project will develop a novel data mining approach for aviation safety and design innovative representations of the results in order to effectively transfer the gained to such users as airlines and air navigation service providers”

Connect with us!